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SUMMARY

A new analytical solution is presented for the case of a stratified seiche. This solution, especially its energetics, is
useful for the validation of numerical shallow water models under stratified conditions. The utility of the
analytical solution for validation is shown by using it to validate a simple finite difference numerical model. A
comparison of the energetics of the numerical and analytical solutions reveals that the model results converge
rapidly to the analytical solution with increasing resolution, such that a grid size of 3D would appear
adequate for validation. In addition to properly resolving the spatial features, good temporal resolution is also
necessary for validation, i.e use of a Courant numtsJ [ess than one. For example, owing to the numerical
dispersion of the present model, usi@g=5/4 rather tharCr=1/4 for the 50x 50 grid resulted in & times
larger RMS errors of model versus analytical barotropic available potential energy.

This new analytical solution should be applied to a test suite of such validation tools before using such
numerical models to simulate the more realistic geophysical flows encountered in lakes, bays, harbours and semi-
enclosed seas under stratified conditiogs1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shallow water circulation models must be numerical in order to simulate realistic geophysical flow
situations, as a general analytical solution that describes the entire range of flow phenomena is
intractable. For the purpose of validating such numerical models, it is necessary to have analytical
solutions to the set of governing equations that the numerical models approximate. A dearth exists of
analytical solutions to the equations of motion that adequately test the validity of numerical models
that seek to approximate those equations. Some good examples of solutions for this purpose are given
by Lynch and Officel~ The purpose of this paper is to provide one such analytical solution, which
will be appropriate for the validation of models of the equations of motion in settings such as lakes,
bays, harbours and semi-enclosed seas.

This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
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The emphasis here will be on seiches. An example of a solution for a seiche in homogeneous water
was given by Neumann and Piersofihe presentation will proceed by first giving the equations of
motion that govern seiches in closed basins. The derivation will proceed by decomposing the
governing equations into their barotropic and baroclinic components and then showing their
respective analytical solutions. An analysis of the energetics will be presented for both the barotropic
and baroclinic components. Next, the combined solution for the (slightly simplified) governing
equations will be presented. The energetics of the combined solutions will then be derived, because
these integral quantities are convenient diagnostic quantities for the validity of numerical solutions.
Finally, an application of the analytical solution to the validation of a simple finite difference
numerical model of the governing equations will be given to illustrate the benefits of using the
analytical solution to validate numerical shallow water models under stratified conditions.

2. GOVERNING EQUATIONS

Using the Boussinesq, hydrostatic and incompressible assumptions and neglecting the non-linear
terms in the momentum equation and the horizontal advection of density in the density equation, the
equations of motion that are applicable to seiche motions in a Cartesian co-ordinate, two-dimensional
(length, depth) region can be simplified to

u i@zo, (1)
ot p,oX

%Jraa—"zvzo, @)
T =0 )
%erwz—Z:O. 4)

Hereu andw are velocity components in the respectiv€length) andz (depth, positive upward)
directions t is time, g is the earth’s gravitational acceleratidhis the hydrostatic pressure apdnd
p, are the water density and reference water density respectively.

The horizontal speed can be decomposed into a depth-averaged compdnemtd a depth-
variable component’ which are defined by

o1
uzﬁLHuM ()

where H is the bottom depth, and’ = u — 0. With these definitionsi will correspond to the
barotropic andy)’ the baroclinic components of
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The pressuréd® is hydrostatic and is defined by integrating equation (3) from depip to the
perturbation of the surface, from mean sea level:

"
P=| roce ®)
z
0
= P91 + J pg dz ()
z
0 0
= podn + J pg dz + J p'g dz, ®)
z z

where the approximatiofb" p dz = p,gn has been made (note that the reference densjtéequation
(1)) is taken to be the surface density). A time-invariant linear background vertical profile of density,
p = p, — ZAp, is invoked, with a corresponding constant background vertical proﬂle of prespsure
The perturbation density also has a corresponding perturbation prespusech thatf p dz =

Using the definitions for pressure and surface elevation and denoting the mternal pressure as
p =p+p/, the momentum equation (1) can be expanded to

u a1
Tigd =L o, 9
ot 9T oy o ©

where use has been made of the fact tjeix = 0.

3. BAROTROPIC AND BAROCLINIC MODES

Equation (9) can be separated into depth-averaged (barotropic) and depth-variable (baroclinic) parts
(0 andu’). The analysis will proceed by deriving the governing equations for first the barotropic and
then the baroclinic modes of the governing equations. The solutions for both modes will be given,
then recombined to show the full solution.

3.1. Barotropic mode

Applying the depth averaging (as in equation (5)) to equations (2) and (9) yields expressions for the
evolution of the depth-averaged horizontal speed and surface elevation:

au 0
gﬂ—, (10)

317 au
o +H—- v =0, (12)
where use has been made of the definitign= 0) = dn/at to derive equation (11) and the boundary
condition onw for a flat bottomw(z = —H) = 0. It may be noted that the depth-averaged equations
are an example of the shallow water equations.
The vertical speed that corresponds to the depth-averaged system will be denbtaoldas given
by the constraint that it must obey continuity:

ou  ow
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774 D. E. ELIASON AND A. J. BOURGEOIS

These three equations (10)—(12) comprise the governing equations for the depth-averaged system.
A solution to this system of equations for a seiche in a closed basin of lénigth

n =1, COS (nfx) cos (g cot), (13)
U= %HCO sin(nrx) sin(g cot>, (14)
W= —nOWCOS(CTX) sin<§ cot>, (15)

wherer, is the amplitude of the surface elevation ands the gravity wave speed, = /(gH).

3.1.1. EnergeticsThe following analysis of the energetics of the barotropic mode follows quite
closely Gill's® analysis of the energetics for shallow water motion.
The energy equations for the barotropic mode can be derived directly from equations (10) and (11).
The total energy equation for the barotropic mode is obtained by multiplying equation (QH@y
and equation (11) by,g#, then adding the two together:
26 PHT + 3po@r7) + 2 (p,0HTn) = . (16)

In equation (16) the quantityp,HG? is the barotropic kinetic energy per unit area gmggn? is the
barotropic potential energy, per unit area, of the perturbation.
The integral of equation (16) over the length of the basin gives the total perturbation energy
balance equation for the barotropic case as
dE - -
E+F(x:0,t)+F(x:L,t):0, (17)

where
— L — _
E= J G poH 0% + %pognz) dx = KE + APE (18)
0
is the total barotropic perturbation energy per unit lenfB,andAPE are the barotropic kinetic and
available potential perturbation energies respectively, and

F(x, t) = p,gHn (19)

is the barotropic perturbation energy flux.

Because of the boundary conditions @in the closed basirf(x = 0,t) = F(x = L, t) = 0. Thus
the total barotropic perturbation energydoes not change with time. For the seiche solution, (13)—
(15), it is easily verified thatlE/dt = 0, as

N . T
E =LgponiL smz(E cot) (20)
and
_ T
APE = Lgp,n2L cos? (E cot) (21)

for that system. Note thd is time-invariant, becaus€E and APE are 90 out of phase.

3.2. Baroclinic mode

The baroclinic (depth-variable) equations are derived by subtracting the barotropic equations (10)—
(12) from the full system of equations. For example, the equation for the baroclinic horizontal speed
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U’ is obtained by subtracting equation (10) from equation (9). The resulting set of equations for the
baroclinic mode is

aa—ti/ pioaa—‘i:o, (22)
%—l:(/JrgﬂZ/:o, (23)
P g=o, (24)

%—’i#w/%:O (25)

Equation (25) has been derived by involving the time invariancg afhd by linearizing the density
advection term (i.ew’dp/0z instead ofwdp/dz in equation (4)). The non-linear effects that arise from
the vertical density advection can be important and their understanding is desirable. However, the
linearized model allows for an analytical solution which can be used as a validation tool for
numerical models of stratified shallow water systems, which is the primary goal of the present study.
Thus the important question of how to best validate the non-linear vertical density advection has been
left to other studies.

A solution to the baroclinic set of equations (22)—(25) has been derived by Klinck (personal
communication):

u =u, sin<|nTX> cos(%) sin(wt), (26)
,IH I7x mrnz " 27
w _—muocos<|—>sm(H )sm(w) 27
,  mnP, Inx\ . (mnz
p = oH cos(T) sm(T) cos(mt), (28)
I7x
p=P cos( 3 )cos( |_7|T )cos(wt) (29)

were u, = mnP,/(p,NH) is the amplitude of the baroclinic horizontal spe¢dand m are the
horizontal and vertical mode numbers respectivedyjs the frequency of the baroclinic mode,
o = IHN/(mL), P, is the amplitude of the internal pressure perturbation Aihi the constant
background Brunt-Visda frequencyN? = —(g/p,)3p/0z.

To ensure that the solution for the perturbation internal pressure equation (29), obeys the integral
form of the hydrostatic equation, the definitionwfbecomeg’ = p° + p*, where the artefaqt® is
defined asp® = P, cos(lnx/L) cos(wt) and p* is an |ntermed|ate variabley* _j p'gdz. The
corresponding defmmon fop is the more straightforwarg = j pg dz, which was used with
equation (3) to produce equation (24).

3.2.1. EnergeticsGill® gives an analysis of the energetics of internal waves, which is followed
closely in the following analysis of the energetics of the baroclinic mode.
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The baroclinic perturbation energy equation is obtained by multiplying equation (22)Wy
equation (23) by, equation (24) by’ and equation (25) by?p’/(p,N?) and adding the results:

(1 o 1 g H\ aup) awp)
at(zp"” TN )T Ty T

The two terms of the baroclinic perturbation energy in equation (30) can be identified as the kinetic
energy(} g%p,u’?) and potential energg g2p/?/(p,N?)) terms. The remaining terms together are the
baroclinic perturbation energy flux.

Integrating equation (30) over the area of the basin shows that the rate of change in energy over
that area is equal to the flux of energy across the sides:

dE’
dt

0. (30)

+Fx=0,z) + Fx=L,z,t) + F(x,z=—-H,t) + F'(x,z=0,t) = 0, (31)

whereFE’, the total baroclinic perturbation energy per unit length, is

0 L 1 92
E = J J <%p0u/2 -|-5 sz/z) dx dz = KE' + APE/, (32)
-H Jo Po
KE’ and APE’ are the baroclinic kinetic and available potential energies respectively and
F'(x,z,t) = up’+wp’' is the baroclinic perturbation energy flux. As in the barotropic mode,
because of the boundary conditioS,= 0 at the boundaries of the basin. Thus the total baroclinic
perturbation energy remains constant in time. From the seiche solution for the baroclinic mode,
equations (26)—(29), the baroclinic kinetic energy and baroclinic available potential energy are

_ poHLUG
T8

. HLu2
KE' sin?(ot), APE’ = p"Tu(’cosz(wt). (33)

As for the barotropic energyg’ does not change with time, becausE’ and APE’ are 90 out of
phase.

4. COMBINED SOLUTION

The combined solution, which solves equations (1)-(4), except with the linearization of the density
advection term, can be constructed from the above as

N =M, COS (H—LX) c0S (% cot), (34)
u= ’7|°_|C° sin(n—LX) sin(E cot) + U, sin<|ﬂTX> cos(%) sin(wt), (35)
W= —1, Wcos(n{() sin(% cot) — rlniLu“’ cos (IRTX> sin(%) sin(wt), (36)
P =p,gn + (% 2?2 — poz>g + P, cos (IRTX) cos(%) cos(mt), (37)
p =p, —ZAp + mgn: °cos (InTX) sin(%) cos(wt). (38)
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4.1. Energetics
Neither the barotropic nor the baroclinic total perturbation energy varies with time, so the total
perturbation energ¥ of the combined solution is also time-invariant:
E = KE + APE + KE' + APE’

poHL
8

= 755 (g7} + 3 Hup). (39)

cos?(wt)

% sin(wt) + p°:|3Lu°

T
=1gpniLsin (L cot) + 1gpyniL cos? (E cot> +

These integral quantities should be convenient diagnostic quantities for the validity of numerical
solutions of stratified seiches.

5. APPLICATION

In this section a simple numerical scheme using finite differences will be presented that attempts to
solve the governing equations for seiches in closed basins (equations (1)—(4)). The results of the
model will be compared with the analytical solution as derived above in order to show the usefulness
of the analytical solution (especially the energetics) in validating such numerical models.

5.1. Numerical model

The barotropic mode of the numerical model is solved semi-implicitly:

gH At _ gH At _
UMt 45— (’7?:11/2 - ’1?+1l/2) =ut - (’1|+1/2 ’7?—11/2)7 (40)
it + (Ulrrll/z Uin—+11/z) =" (U|+1/2 UM il), (41)

whereU = Hu is the transport per unit width in thedirection,2At is the time step from time level
n —1ton+ 1and2Ax is the horizontal spatial interval between like variables on the space-staggered
Arakawa ‘C’ grid, which are indexed by integer valuesipivhereas variable separated only &y
are indexed by half-integer values bfThe indexing proceeds from=1 atx =0 t0 i = i, at
X = L.

The combined simultaneous equations (40) and (41) form a tridiagonal system that is solved using
what is sometimes referred to at the ‘Thomas algorithm’.

Upon solution of the barotropic mode equations, the baroclinic mode equations are advanced using
the leapfrog method:

1 1 9At o 1 -1 At
U.”T{ =U — 2A% ﬂ?fl/z - '7.n+1/2 + ’1?+1/2 - 1/2) (p|+1/2 kK — pirl1/2,k)» (42)
O
ufiet = ufiet — UM/, (43)
Az
1 1 - 1 1 1 1
wit = wirh +wich —wikt — &(Ufnﬂ/z,kﬂ/z — UM o kr1ye F U212 — Ulijokgas2),  (44)
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PTkH = Pi,f]fl - %(Wf?kfl/z + W 11/2)(Pk_1 — Prya)s (45)
Pk = Pt + 9AZ( + pi, (46)
Py = (PT, -1 — 3P%k,,)/4 (47)
Pkt =P + Phk (48)

where2Az is the vertical spatial interval between like variables, indexed at integer valdesan€i
unlike variables are at the half-integer values (E.@L.%). Except for the continuity equation (44) and
the first two pressure equations (46) and (47) the baroclinic equations are computddZ$rdnto

k = Knax, While all equations are computed froim= 1 t0 i = .

Note that the continuity equation (44) from whieh is computed is averaged over time levels
n—1andn+ 1, as is its barotropic analogue (41), and that it is integrated upwards from the bottom
boundary condition ofv' =0 atz = —H (k = K,5,) to the mean sea surfacezat 0 (k = 1).

To begin the vertical integration for the intermediate variafe at k = 1, it is estimated as
Pt = gp{f‘f’lAz/Z, after which equation (46) is integrated frdm= 2 to k = k5. Subsequently, the
pressure artefactp? is computed from equation (47), which is derived by noting that
p° = —%p*(z = —H) and using linear extrapolation to estimatz = —H) from the two pressure
points nearest to the bottom.

The numerical model is applied to a basin with dimensions and stratification similar to those of
East Lagoon, a narrow and shallow coastal lagoon in Galveston, Texas (Figure 1). The dimensions of
East Lagoon ard = 2 km in length and a maximum dfi =5 m in depth. It has a summertime
stratification in the deeper landward basin that can vary fegre= 1021 kg m~* at the surface to
py = 1023 kg m~2 in the bottom of the basin. With these parameter values the barotropic seiche
period isT = 2L/c, = 9-52 min and the baroclinic seiche period for the first vertical and horizontal
modes(l =m=1) is T' =2n/w = 11.26 h. The model was run with a spatial resolution of
Ax =20 m andAz = 0-05 m, resulting in a grid size of 5& 50 density points.

The initial conditions for the numerical model were set by specifying the solutions at tireof
the barotropic (equations (13)—(15)) and baroclinic (equations (26)—(29)) modes on the East Lagoon
grid points. The parameters for the initial conditions were specified using the above density
stratification, andj, =5 cm andu, = 10 cm s %,

To determine the effects of using less resolution, four additional ‘long’ runs were also made, as
summarized in Table I. Also, one more run was done using the 50 grid, but using the same time
step as the 1& 10 grid, to determine the effect of using a larger time step.

The energetics of all of these runs were compared with the energetics of the analytical solution by
computing the root mean square error (RMSE) and the index of agreeth@vitich Wilmot®® has
argued is preferable to the correlation coefficient for model validation):

nmax
Z (An - Nn)2
d=1-"= (49)

nmax
> (1AL + INJIY
n=1

whereA, are the analytical energetics (€ARE), N, are the numerical energetios, = A, — A and
N, = N, — A with A being the mean of the analytical energetics. The interpretation of the index of
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Figure 1. Geographical location of East Lagoon on Galveston Island, Texas (after Livit)gston

agreement, which has a range0o& d < 1, is that values ofl which are close to unity indicate that

the model results agree very well with the analytical solution, while valwkwdfich are close to zero
indicate poor agreement of the model results with the analytical solution. In a loose way, one can
think of the RMS error as being a measure of how well the model results agree with the analytical
solution in terms of magnitude, ambhs being a measure of how well the pattern of the model results
matches the pattern of the analytical solution.
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Table I. Grid sizes (number of density points), correspond-
ing grid interval sizes (in metres) and time steps (in

seconds) for five runs that were done to test effects of
changing resolution and one additional run that was done
to test effect of increasing time step (the 5®0f grid)

Grid Ax(m) Az(m) At(s)
10 x 10 100 025 352
20 x 20 50 0125 176
30 x 30 333 0-083 1.17
40 x 40 25 00625 088
50 x 50 20 005 070
50 x 50t 20 005 352

For the 50x 50 grid a time step ofAt = T/640 ~ 0-892 s was used for the ‘short’ run to
N = Nmax = 640 to illustrate the barotropic response and a time steptot= T'/57600 ~ 0-704 s
was used for the ‘long’ run ta,,,, = 57,600 to show the baroclinic response. As shown in Table I,
the time steps were varied proportionally to the grid interval sizes for the coarser resolution cases.
An explicit time step was used to step the solution forwards from the initial conditions to the first
time step. A 1-2—1 temporal smoother suggested by Killwonths used to couple the two modes
that resulted from this start-up procedure, to damp out the computational mode exhibited by the
leapfrog schem@ The temporal smoother was subsequently applied every 30th time step.

5.2. Results

A visual comparison of the numerical with the analytical energetics for both one period of the
barotropic mode (the ‘short run’, Figure 2) and one period of the baroclinic mode (the ‘long run’,
Figure 3) shows that the energetics of the numerical results agree quite well with the analytical
solution. Small variations in the numerical results from the analytical solution due to the
computational mode of the leapfrog scheme are efficiently damped by the temporal smoother.

The total energy, as expressed in equation (39), is constant in time. Integration of the equations for
density shows that the basin integral @fis zero, so the only contribution to the total mass comes
from the background density profile, whose basin integréllip, + p,)/2. Figure 4, which shows
these quantities versus time for both the analytical and the numerical solution, demonstrates that the
numerical model conserves both mass and total energy well.

The results of varying the resolution (as summarized in Table Il) show that the model results
converge quickly to the analytical solution for the energetics as the resolution increases. The RMSE
decreases with increasing resolution and the index of agreement increases. Figure 5 shows that the
RMSE decreases exponentially with linearly increasing resolution, while the index of agreement only
increases exponentially for the barotropic mode (plotskiBrwere nearly identical with those for
APE). In contrast, high value@ > 0-97) were obtained for the index of agreement for the baroclinic
mode for all resolutions that were run.

The results of the final run that was done using thex580f grid were that the barotropic mode
energetics were much worse in comparison with the analytical solution than those usingxHs050
grid, but the baroclinic mode energetics agreed with the analytical solution just about as well. As
shown in Table I, increasing the time step to five times its previous size had the result of increasing
the RMSE from @42 to 15 kJ m™* (i.e. 36 times larger) while decreasing the index of agreement
from 0-998 to 0970. It will be shown in Section-3 that this decrease in how well the model results
agree with the analytical barotropic energetics, without a corresponding decrease in the agreement in
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APEext (kJ/m)
(2]

KEext (kJ/m)

0.0 2.4 4.8 7.2 9.6

Time (min)

Figure 2. Energetics of analytical (circles) and 6®0 grid numerical (full line) solutions for one period of barotropic seiche:
a, available potential energy of barotropic mode (APEeAPE); b, kinetic energy (KEext KE)

the baroclinic energetics, is due to the numerical dispersion of the semi-implicit solution of the
barotropic mode.
5.3. Discussion

The statistical measures given in Table Il and shown in Figure 5 reflect the fact that at lower spatial
resolutions the numerical barotropic mode gets out of phase with the analytical solution. Figure 6
illustrates this phase shift for the last barotropic mode of the run using the2l@grid. The very low

APEint (kJ/m)

KEint (kJ/m)

0 3 6 9 12
Time (h)

Figure 3. Energetics of analytical (circles) and 6®&0 grid numerical (full line) solutions for one period of baroclinic seiche:
a, available potential energy of baroclinic mode (APERPE); b, kinetic energy (KEint KE)
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Mass (Gg)

TE (kJ/m)

) ! 1 1
0 3 6 9 12

) ) . . . Time (h ) S
Figure 4. Analytical (circles) and 58 50 grid numerical (full Ilnr(]e's so(lu%ons for one period of baroclinic seiche: a, total mass;
b, total energy. Note that both quantities are well conserved by the numerical model

values ofd obtained for the 10« 10 grid support the interpolation dfas an indicator of how well the
model results match the pattern of the analytical solution. The relatively high RMSE obtained for that
solution was primarily because of the phase shift; the magnitude of the num&PiEakas otherwise

quite close to the analytical values (Figure 6).

In contrast with the index of agreement #PE, d remained high foAPE’ regardless of the grid
resolution, because the baroclinic period was so much more well resolved in time than was the
barotropic period. For example, the time step used for thex 1@ grid resulted in only 162 time
steps per barotropic period versus 11,520 per baroclinic period, while for tixe3&0grid 811 time
steps were made per barotropic period versus 57,600 per baroclinic period.

One might be tempted to conclude that the mismatch in the phase of the numerical versus
analytical APE andKE in the lower-resolution cases was due to numerical dispersion. After all, as
shown in the Appendix, the semi-implicit portion of the numerical scheme is dispersive. However,
the numerical dispersion is dependent upon the Courant number (see equation (55) in the Appendix).
Because the time step for the varying resolution runs was varied proportionally to the grid interval
size (Table 1), the Courant number remained the sé@@ne= 1/4). Only the run using the 5& 507
grid used a different Courant numb@r = 5/4). As can be seen from Figure 7 in the Appendix, the
dispersion for the run using the 50501 grid was much greater than that for the run using the
50 x 50 grid. This larger numerical dispersion was responsible for the worsening of agreement
between the numerical results and the analytical solution for the barotropic energetics, without any
corresponding decrease in the agreement for the baroclinic energetics, when going fronxtb@ 50
to the 50x 50t grid.

6. CONCLUSIONS

An analytical solution has been presented for the case of a stratified seiche. The analytical solution is
useful for the validation of numerical shallow water models under stratified conditions, especially the
energetics of the solution. As an example, a simple finite difference model of the governing equations
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Table Il. Root mean square error (RMSE) and index of

agreement, for comparison of model energetics results with

analytical solution for five different grid resolutions. The

50 x 50t grid denotes the 5& 50 grid, but using the time
step of the 10x 10 grid (see Table 1)

Grid Quantity RMSE (kJ m?) d
10 x 10 APE 6-8 0345
KE 6-8 0-345
APE’ 11 0.987
KE’' 15 0975
20 x 20 APE 2:6 0911
KE 2.6 0911
APE’ 027 0999
KE’' 035 0998
30 x 30 APE 1.2 0982
KE 1.2 0982
APE 012 1000
KE’ 015 1.000
40 x 40 APE 0-66 0994
KE 0-66 0994
APE’ 0068 1000
KE’' 0.085 1.000
50 x 50 APE 042 0998
KE 0-42 0998
APE’ 0.043 1.000
KE’' 0054 1000
50 x 50f APE 15 0970
KE 15 0970
APE’ 0042 1.000
KE’' 0054 1000

was presented which combined semi-implicit and leapfrog time stepping for the solution of the
barotropic and baroclinic modes respectively.

From the comparison of the energetics of the numerical and analytical solutions it was shown that
the numerical scheme is convergent. However, at spatial resolutions lower than abe030
density grid points the barotropic mode of the numerical solution gets out of phase with that of the
analytical solution, substantially worsening the agreement. In contrast, the agreement between the
numerical baroclinic energetics and those of the analytical solution were less susceptible to
decreasing spatial resolution; this is attributed to a far better temporal resolution of the baroclinic
period than for the barotropic period.

Increasing the time step fivefold for the 5050 grid caused the agreement between the numerical
results and the analytical solution for the barotropic energetics to worsen substantially, without a
corresponding decrease in the agreement for the baroclinic energetics. A linear stability analysis
showed that the dispersive nature of the semi-implicit scheme was responsible for this behaviour.

In conclusion, the analytical solution presented herein is a useful validation tool for numerical
shallow water models. It should be applied amongst a test suite of such validation tools before using
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such numerical models to simulate the more realistic geophysical flows encountered in lakes, bays,
harbours and semi-enclosed seas under stratified conditions.
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APPENDIX

To show that the semi-implicit solution of the barotropic mode of the numerical model leads to
numerical dispersion, a linear stability analysis is made of equations (40) and (41). Denoting the
imaginary number asi’; using j for the horizontal index, and substituting! = U"el* and

n" = i"el* into equations (40) and (41), then dividing throughdsygives

. . C2At. . ne
gntt —gntt — Zx |S|n<g>(n”+l +i"), (50)
At -l At i Sin(ﬁ)@ 14 -1y (1)
AX 2 ’

where use has been made of the idergity? — e="*/2 = 2isin(x/2).

To eliminate; from equations (50) and (51), the time levelequation of equation (50) is
subtracted from its time leveh + 2 equation. The resulting three-time-level expression tbr
contains term involvingj"t? — "2, which can be obtained by adding equation (51) at time level
n + 2 to its time leveln equation. Substituting the resulting expressionjfd? — "2 into the three-
time level expression foU results in

1 +7H0™2 21 —y»)0" + (1 +7*)0" 2 =0, (52)

wherey? = C,2sin(x/2), with Cr = ¢,At/Ax being the Courant number.

The amplification ol as it steps forwards in time from time leveto n + 2 can be expressed as
Un+2 — AU", whereA is the amplification factor. With this definition ¢%, equation (52) can be
rewritten as a quadratic iA:

2(1-9%
A2 = I A4+1=0. 53
1+ VZ + ( )
Thus the amplification factor for the semi-implicit scheme is
1— 92+ 2iy
A=—-——7—. 54
1492 4

The modulus of this amplification factor j8|°> = 1, so the semi-implicit scheme is unconditionally
stable.

Of more interest to the analysis of the present results, however, is the phase shift of the numerical
scheme. One way to evaluate the phase of the numerical scheme is to use Leentieostept of
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discontinuity inQ at that point wherCr? sin(e/2) = 1

the phase facto®. The phase factor is defined as the ratio of the numerical phase to the analytical
phase. Thus the numerical scheme is too fa@t # 1 and too slow (i.e. dispersive) @ < 1. For the
present scheme,

_tanT2y/(1 —y?)]
Q= oCr ' (55)

As shown for five values of the Courant number in Figur®7: 1 for the present scheme, thereby
illustrating that the present scheme is dispersive.
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